X-ray characterization of Sr₃Zr₂O₇ hydrate *

The investigation of the phase equilibrium diagram $SrO-ZrO_2$ is of great interest on account of the refractory properties of these materials. Previous work on this binary system was reported by Cocco and Chiacigh [1], Noguchi, Okubo and Yonemochi [2], Traverse and Foex [3] and Tilloca and Perez Y Jorba [4]. Further research on the structural properties of binary compounds belonging to the SrO-ZrO₂ system was reported by the present authors [5-7], who, among other things, stated the existence of a high-temperature phase transition in the compound $Sr_3Zr_2O_7$ [6, 7]. Since this compound shows a strong tendency to hydrate [1, 6, 7], the present investigation was undertaken to shed light on its behaviour under water absorption conditions and to determine crystal data and the thermal stability of a new hydrated phase, $Sr_3Zr_2O_7 \cdot 2H_2O$.

Mixtures of reagent-grade purity $SrCO_3$ and ZrO_2 in a 3:2 molecular ratio were mixed in agate mortar, pressed into pellets and air-fired in an electric furnace at 1600° C for 12 hours. The sintered material was then subjected to X-ray diffraction and reflected-light microscopic analyses to check the attainment of equilibrium conditions (equilibrium was considered to have been attained when no change could be detected in single-phase samples).

The compound $Sr_3Zr_2O_7$ was then introduced into a 25° C thermostated room with 70% relative humidity, and its weight changes were checked at long time intervals. Gradual hydration of the compound was observed; equilibrium was practically reached after 40 days. Thermogravimetric analysis of hydrated specimens yielded a water content of two moles per mole of $Sr_3Zr_2O_7$. TABLE I Crystal data for $Sr_3Zr_2O_7 \cdot 2H_2O$

Parameter	Value	
a	4.107 ± 0.002 Å	
Ь	4.094 ± 0.003 Å	
c	24.896 ± 0.020 Å	
V	418.6 Å ³	
МW	593.33	
Z	2	
δ calc	$4.70 \mathrm{g}\mathrm{cm}^{-3}$	
δobs	$4.63 \mathrm{g} \mathrm{cm}^{-3}$	
0.00	5	

Hence, the stoichiometric formula of this new phase is assumed to be $Sr_3Zr_2O_7 \cdot 2H_2O$. The thermogravimetric analysis also revealed that the hydrated phase is stable up to $300 \pm 20^{\circ}$ C; its

TABLE II X-r	ay powder	diffraction	data	of $\operatorname{Sr}_{3}\operatorname{Zr}_{2}\operatorname{O}_{7}$.
$2H_2O$				

hkl	d _{obs}	d _{calc}	$I_{\rm obs}^*$	
002	12.45	12.45	m	
004	6.25	6.22	W	
102	3.900	3.901	mw	
104	3.431	3.428	mw	
105	2 170	3.169	vvw	
015	3.170	3.162	v v w	
008	3.112	3.112	w	
106	2.926	2.919	vs	
016	2.912	2.914	s	
110	2.901	2.900	vvs	
112	2.830	2.824	w	
009	2.757	2.766	vvw	
115	2.500	2.506	w	
0010)	2.490		
108	2.481	2.480	mw	
018	1	2.478		
116	2.382	2.377	mw	
0110)	2.127		
118	2.123	2.121	w	
0012	, 2.079	2.075	m	
200	2.054	2.054	ms	
020)	2.047	1110	
201	2.048	2.046(7)	m	
202	í	2.026		
022	2.026	2.020	w	
119	2.000	2.002	vvw	
203	1	1.994		
023	1.993	1.989	vw	
025	, ,	1.893		
1110	1.888	1.889	vw	
206	1.841	1.841	vw	
212)	1.816	* **	
122	1.815	1.813	vw	
213	, 1.798	1.813	w	
213	1./20	1.792	w	
207	1.778	1.779	vvw	
0014	1.//0	1.778	V V W	
214	Ś	1.774		
124	1.756		w	
215	1 775	1.758	***	
	1.725	1.722	m	
1112	1.689	1.687	ms	
216	1.680	1.679	W	
126	1.678	1.676	ms	
1014	1.624	1.632		
217	1.634	1.631(2)	vvw	
0114	J	1.631		

*Intensities: vvs = very very strong, vs = very strong, s = strong, ms = medium strong, m = medium, mw = medium weak, w = weak, vw = very weak, vvw = very very weak.

*Work supported by the Consiglio Nazionale delle Ricerche, Roma, Italy.

© 1978 Chapman and Hall Ltd. Printed in Great Britain.

decomposition starts at this temperature and is completed at $360 \pm 20^{\circ}$ C.

Powdered specimens of the hydrated phase were inspected by the X-ray powder diffraction technique. A Guinier-de Wolff camera and a Siemens horizontal goniometer, using CuK α radiation, permitted us to collect diffraction patterns in the 2θ range 20° to 100° .

The X-ray diffraction pattern of $Sr_3Zr_2O_7 \cdot 2H_2O$ was indexed on the basis of an orthorhombic unit cell, with a = 4.107, b = 4.094, c = 24.896 Å at room temperature. The lattice parameters were least-squares refined [8] by choosing 21 reflections of the Guinier pattern, calibrated against Pb (NO₃)₂ as the internal standard. Crystal data of the phase are summarized in Table I; spacing values are reported in TableII.

In a previous paper [6] it was reported that the compound $Sr_3Zr_2O_7$ undergoes an $\alpha \leftrightarrow \beta$ phase transition at $680 \pm 20^{\circ}$ C. The α -phase, stable at temperatures above 680° C, is tetragonal with lattice parameters a = b = 4.113, c = 21.065 Å. The β -phase, stable at room temperature, is orthorhombic with a = 4.113, b = 4.102, c = 20.941 Å. Both phases show $Sr_3Ti_2O_7$ -type structures, [9] with double perovskite layers interleaved with SrO layers.

 $Sr_3Zr_2O_7$ tends to hydrate, and the formula of the hydrated compounds was found to be $Sr_3Zr_2O_7 \cdot 2H_2O$. This hydrated compound exhibits a well-defined crystal habit and chemical composition; its structure is pseudo-tetragonal, with axis ratio c/a of 6.07. The elongation of the model along the *c*-axis suggests the presence of water molecules near the SrO layers of the lattice, probably due to the open sizes existing in such positions. Contrary to the anhydrous phase, $Sr_3Zr_2O_7 \cdot 2H_2O$ is stable at room temperature and does not decompose after prolonged heating up to about 300° C.

References

- 1. A. COCCO and I. CHIACIGH, Ann. Chim. (Rome) 55 (1965) 1341.
- 2. T. NOGUCHI, T. OKUBO and O. YONEMOCHI, J. *Amer. Ceram. Soc.* **52** (1969) 178.
- 3. J. P. TRAVERSE and M. FOEX, High Temp.-High Press. 1 (1969) 409.
- 4. G. TILLOCA and M. PEREZ Y JORBA, Res. Intern. Hautes Tempér. Refract. 1 (1964) 331.
- 5. V. LONGO and D. MINICHELLI, Ceramurgia 4 (1974) 25.
- 6. Idem, Ann. Chim. (Rome) 64 (1974) 471.
- 7. Idem, La Ceramica 28 (1975) 11.
- 8. D. MINICHELLI, Ceramurgia 3 (1973) 3.
- 9. S. N. RUDDLESDEN and P. POPPER, Acta Cryst. 11 (1958) 54.

Received 9 January and accepted 17 February 1978

> DINO MINICHELLI ARCO SMALTI S.p.A. Sassuolo (Modena), Italy VITTORIO LONGO Istituto di Chimica Applicata e Industriale, Università degli Studi, Trieste, Italy